Parallel Implementation of Otsu’s Binarization Approach on GPU
نویسندگان
چکیده
Fast algorithms are important for efficient image processing systems for handling large set of calculations. To speedup the processing, parallel implementation of an algorithm can be done using Graphics Processing Unit (GPU). GPU is general purpose computation hardware; programmability and low cost make it productive. Binarization is widely used technique in the image analysis and recognition applications. In this paper, we investigate the accuracy and performance characteristics of GPUs on well known global binarization Otsu’s approach for Optical Character Recognition systems. The main goal of this research work is to make binarization faster for recognition of a large number of document images on GPU. The algorithm is implemented using Compute Unified Device Architecture (CUDA). Experimental results show that parallel implementation achieved an average speedup of 1.6x over the serial implementation when running on a GPU named GeForce 9500 GT having 32 cores. Otsu’s method is also evaluated using PSNR, F-measure, NRM, and IND evaluation measures. General Terms Document Analysis and Recognition, Image Processing, Pattern Recognition.
منابع مشابه
Parallel Implementation of Souvola’s Binarization Approach on GPU
Binarization is widely used technique in many of the image processing applications. Fast algorithms are needed for fast and efficient image processing systems. Many algorithms of image processing and pattern recognition have recently been implemented on Graphic Processing Unit (GPU) for faster computational times. GPUs are most prominent hardware in utilizing parallelism and pipelining than gen...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملParallel Implementation of Niblack’s Binarization Approach on CUDA
Image processing and pattern recognition algorithms take more time for execution on a single core processor. Graphics Processing Unit (GPU) is more popular now-a-days due to their speed, programmability, low cost and more inbuilt execution cores in it. Most of the researchers started work to use GPUs as a processing unit with a single core computer system to speedup execution of algorithms. The...
متن کاملFast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کامل